Search results for "Brain regions"

showing 2 items of 2 documents

Identification of calcium sensing receptor (CaSR) mRNA-expressing cells in normal and injured rat brain

2009

Calcium sensing receptor (CaSR), isolated for the first time from bovine and human parathyroid, is a G-protein-coupled receptors that has been involved in diverse physiological functions. At present a complete in vivo work on the identification of CaSR mRNA-expressing cells in the adult brain lacks and this investigation was undertaken in order to acquire more information on cell type expressing CaSR mRNA in the rat brain and to analyse for the first time its expression in different experimental models of brain injury. The expression of CaSR mRNAs was found mainly in scattered cells throughout almost all the brain regions. A double labeling analysis showed a colocalization of CaSR mRNA expr…

Malemedicine.medical_specialtyTime FactorsCentral nervous systemHippocampusCell CountSettore BIO/11 - Biologia MolecolareBiologySettore BIO/09 - Fisiologiachemistry.chemical_compoundSeizuresInternal medicineSettore BIO/10 - BiochimicaCaSRmedicineAnimalsRNA MessengerRats WistarIbotenic AcidMolecular BiologyIn Situ HybridizationNeuronsKainic AcidGeneral NeuroscienceDentate gyrusBrainColocalizationImmunohistochemistryRatsOligodendrogliamedicine.anatomical_structureEndocrinologynervous systemchemistryBrain InjuriesNeurogliaNeurology (clinical)Pyramidal cellCaSR; BrainCalcium sensing receptor (CaSR) isolated for the first time from bovine and human parathyroid is a G-protein-coupled receptors that has been involved in diverse physiological functions. At present a complete in vivo work on the identification of CaSR mRNA-expressing cells in the adult brain lacks and this investigation was undertaken in order to acquire more information on cell type expressing CaSR mRNA in the rat brain and to analyse for the first time its expression in different experimental models of brain injury. The expression of CaSR mRNAs was found mainly in scattered cells throughout almost all the brain regions. A double labeling analysis showed a colocalization of CaSR mRNA expression in neurons and oligodendrocytes whereas it was not found expressed both in the microglia and in astrocytes. One week after kainate-induced seizure CaSR was found in the injured CA3 region of the hippocampus and very interestingly it was found up-regulated in the neurons of CA1-CA2 and dentate gyrus. Similarly 1 week following ibotenic acid injection in the hippocampus CaSR mRNA expression was increased in oligodendrocytes both in the lesioned area and in the contralateral CA1-CA3 pyramidal cell layers and dentate gyrus. One week after needle-induced mechanical lesion an increase of labeled cells expressing CaSR mRNA was observed along the needle track. In conclusion the present results contribute to extend available data on cell type-expressing CaSR in normal and injured brain and could spur to understand the role of CaSR in repairing processes of brain injury.Receptors Calcium-SensingIbotenic acidDevelopmental BiologyAstrocyte
researchProduct

Modulation of brain PUFA content in different experimental models of mice.

2016

International audience; The relative amounts of arachidonic acid (AA) and docosahexaenoic acid (DHA) govern the different functions of the brain. Their brain levels depend on structures considered, on fatty acid dietary supply and the age of animals. To have a better overview of the different models available in the literature we here compared the brain fatty acid composition in various mice models (C57BL/6J, CD1, Fat-1, SAMP8 mice) fed with different n-3 PUFA diets (deficient, balanced, enriched) in adults and aged animals. Our results demonstrated that brain AA and DHA content is 1) structure-dependent; 2) strain-specific; 3) differently affected by dietary approaches when compared to gen…

0301 basic medicineMaleAgingClinical Biochemistryfat-1 miceHippocampuschemistry.chemical_compoundMice0302 clinical medicineCerebellumDocosahexaenoic acid (DHA)fatty-acid-compositionFood science2. Zero hungerchemistry.chemical_classificationCerebral CortexArachidonic Acidanxiety-like behaviordocosahexaenoic acidaccelerated mouse samBiochemistryDocosahexaenoic acidArachidonic acid (AA)Arachidonic acidFemaleFatty acid compositionSAMP8 miceBrain regionsPolyunsaturated fatty acidN-3 PUFAdiet-induced obesityDocosahexaenoic AcidsHypothalamusPrefrontal CortexBiology03 medical and health sciencesrat-brainDietary Fats UnsaturatedGenetic modelAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyN 3 pufaBrain Chemistryage-related-changesFatty acidCell BiologyModels Theoreticalgene-expressiondepressive-like behaviorMice Inbred C57BL030104 developmental biologychemistry030217 neurology & neurosurgeryBrain StemProstaglandins, leukotrienes, and essential fatty acids
researchProduct